A 2.0 - kg mass is
dropped 2.0 m above a spring with a spring constant 40.0 N/m. How
much does the spring compress? Use g = 10 m/s².
Solution
Solution
Given Data:
m = 2.0kg
k = 40.0N/m
h = 2.0m
x = ?
m = 2.0kg
k = 40.0N/m
h = 2.0m
x = ?
Useful formulas:
Uₛ = ½kx²
Uₘ = mgh
Uₛ = ½kx²
Uₘ = mgh
Solution:
mg(h +
x) = ½kx²
½kx² - mgx – mgh = 0
½kx² - mgx – mgh = 0
x² - (2mg/k)x –
(2mg/k)h = 0
x² – 2 (mg/k)x +
(mg/k)² = (mg/k)² + (2mg/k)h
(x - mg/k)² =
(mg/k)² + (2mg/k)h
x - mg/k = ±√
{(mg/k)² + 2(mg/k)h}
x = mg/k±√
{(mg/k)² + 2(mg/k)h}
Calculation:
mg/k = 2kg*10m/s ² / 40N/m = ½m
(mg/k)² = ¼m²
2(mg/k)h = 2·½m·2m
= 2m²
(mg/k)² + 2(mg/k)h
= ¼m² + 2m² = (⁹/₄)m²
√ {(mg/k)² +
2(mg/k)h} = (³/₂)m
x₁ = ½m + (³/₂)m
= 2m
x₂ = - ½m - (³/₂)m = - 1m
x₂ = - ½m - (³/₂)m = - 1m
Problem's
answer: 2.0 m